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1 Banach Algebras

1.1 Convolution of measures

Understanding Banach algebras will help us obtain a better understanding of the spectral
theorem.

Here is a motivating example.

Example 1.1. Let G be a locally compact Hausdorff group (so you can think of G = Rd).
Then there is a space M(G) of finite, regular, F-valued Borel measures. Given µ, ν ∈M(G),
define the convolution

µ ∗ ν(A) := µ× ({(g, h) : gh ∈ A}).

This is related to convolution of functions: dµ = f dm and dν = f ′ dm, then f(µ ∗ ν) =
(f ∗ f ′) dm. We could alternatively define this by its action on f ∈ C0(G):∫

f d(µ ∗ ν) =

∫∫
f(gh) dµ(g) dν(h).

This is distributive over addition, and associative:∫
f d((µ ∗ ν) ∗ λ) =

∫∫
f(ghk) fµ(g) dν(h) dλ(k).

Observe that∣∣∣∣∫ f d(µ ∗ ν)

∣∣∣∣ =

∣∣∣∣∫∫ f(gh) dµ(g) dν(h)

∣∣∣∣ ≤ ∫∫ |f(gh)| d|µ| d|ν| ≤ ‖f‖ · ‖µ‖ · ‖ν‖,

so ‖µ ∗ ν‖ ≤ ‖µ‖‖ν‖.
There is also an identity element with respect to convolution, δe. We have

(δe ∗ µ)(A) = (δe × µ)({(g, h) : gh ∈ A}) = µ({h : h ∈ A}) = µ(A),

and a similar property holds for right multiplication by δe. You can also check that δg∗δh =
δgh. So M(X) is a unital Banach algebra with convolution as the multiplication.
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1.2 Invertibility and ideals

Definition 1.1. Let A be a Banch algebra. Then x ∈ A is left-invertible if there is
some y ∈ A such that yx = 1, right-invertible if there is some y ∈ A such that xy = 1,
and invertible if it is left and right invertible.

If x is left and right invertible, the inverses are the same: z = yxz = y. We write this
as x−1.

One important question is: Given an algebra, can we recover information about what
generated it?

Definition 1.2. M is a left ideal in A if M is a vector subspace and xy ∈ M for all
x ∈ A and y ∈M . M is a right ideal in A if M is a vector subspace and yx ∈M for all
x ∈ A and y ∈M . M is an ideal if it is a left and right ideal.

Example 1.2. The compact operators, B0(X) ⊆ B(X), form an ideal.

Example 1.3. Let X 6= ∅ be compact, and let K ( X be closed and nonempty. Then
C(X) ⊇ {f ∈ C(X) : f |K = 0} =: I(K). Then K ⊆ L ⇐⇒ I(L) ⊆ I(K).

These get bigger if K gets smaller In fact, there is a correspondence between maximal
ideals of C(X) and points of X. So we can recover X from C(X).

Lemma 1.1. Let A is a Banach algebra with identity, and let x ∈ A have ‖x − 1‖ < 1.
Then x is invertible.

Proof. Let y :=
∑∞

k=0(1 − x)k. The norm of the k-th term is ≤ 1‖1 − x‖k. So this is an
absolutely convergent series. So for any z ∈ A, we have zy =

∑∞
k=0 z(1− x)k. This gives

(1− x)y =

∞∑
k=0

(1− x)(1− x)k =

∞∑
k=0

(1− x)k+1 = y − (1− x)0.

So we get xy = (1− x)0 = 1.

Corollary 1.1. If ‖x− 1‖ < ε < 1, then ‖x−1 − 1‖ < ε
1−ε .

Proof.

‖x−1 − 1‖ =

∥∥∥∥∥
∞∑
k=1

(1− x)k

∥∥∥∥∥ ≤
∞∑
k=1

‖1− x‖k < ε

1− ε
.

Corollary 1.2. If ba = 1 and ‖c− a‖ < 1/‖b‖, then c is left-invertible.

Proof. We have
‖bc− 1‖ = ‖bc− ba‖ ≤ ‖b‖‖c− a‖ < 1.

so there is an x = (bc)−1. So (xb)c = 1 means that xb is the inverse of c.
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Proposition 1.1. Let A be a Banach algebra with identity, let G` be the left-invertible
elements, let Gr be the right-invertible elements, and let G = G` ∩Gr. Moreover, the map
G→ G : x 7→ x−1 is continuous.

Proof. Openness follows from the previous corollary. For continuity, if x ∈ G, suppose that
‖y − x‖ < ε−1 for some small enough ε > 0. Then ‖x−1y − 1‖ < ε‖x−1‖ < 1. So

‖(x−1y)−1 − 1‖ < ε‖x−1‖
1− ε‖x−1‖

.

Then y−1 exists (because it is equal to (x−1y)−1x−1, and

‖y−1 − x−1‖ < ε‖x−1‖2

1− ε‖x−1‖
.

1.3 Maximal ideals and quotients

Definition 1.3. A left/right/two-sided ideal M is maximal if it is

1. proper (M 6= A),

2. M is not properly contained in any other proper ideal.

Corollary 1.3. If A has an identity, then

1. The closed of a left/right/two-sided ideal is an ideal of the same kind.

2. Maximal ideals are closed.

Proof. Check the proof of (1).
If M is a maximal (e.g. two-sided) ideal, then M∩G` = ∅. This is because if x ∈M∩G`,

then there exists some y such that yx = 1. So 1 ∈M , but then a = a1 ∈M for all a ∈ A .
So M = A . In fact, we have M ∩G` = ∅. Now M = M by maximality.

Example 1.4. The algebra C0(R) ⊇ Cc(R) = {f : f |[−a,a]c = 0 for some a}. This is a
dense ideal. This tells us that this fact really relies on the existence of an identity.

Proposition 1.2. Any proper (left/right/two-sided) ideal in any algebra is contained in a
maximal (left/right/two-sided) ideal.

Proof. Zorn’s lemma.

Lemma 1.2. Let A be a Banach algebra, and let M be a closed idea in A . Then A /M
is still a Banach algebra.
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Proof. Given (x+M), (y+M) ∈ A /M , define (x+M)(y+M) := xy+M . To show that
this is well-defined, we have that for any m,n ∈M ,

(x+m+M)(y + n+M) = xy +my + xn+mn︸ ︷︷ ︸
∈M

+M = xy +M.

To check that A /M is a Banach algebra, we have

‖(x+M)(y +M)‖ = ‖xy +M‖ ≤ ‖xy‖ ≤ ‖x‖‖y‖.

This is true for all x, y, so we can take the inf over x and y to get ‖(x + M)(y + M)‖ ≤
‖(x+M)‖‖(y +M)‖.

1.4 The spectrum of an element

Definition 1.4. Let A have an identity, and let x ∈ A. The spectrum is σ(x) = {λ ∈
F : x − λ not invertible, the left-spectrum is σ`(x) = {λ ∈ F : x − λ not left-invertible,
and right-spectrum is σr(x) = {λ ∈ F : x − λ not right-invertible. The resolvent is
ρ(x) = F \ σ(x).

Example 1.5. Let X be a compact, Hausdorff space, and let f ∈ C(X). Then σ(f) =
f(X) is the image of f . If g(f − λ) = 1, then g(x) = 1

f(x)−λ for all x.
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