Math 255A' Lecture 24 Notes

Daniel Raban

November 25, 2019

1 Banach Algebras

1.1 Convolution of measures

Understanding Banach algebras will help us obtain a better understanding of the spectral theorem.

Here is a motivating example.

Example 1.1. Let G be a locally compact Hausdorff group (so you can think of $G = \mathbb{R}^d$). Then there is a space M(G) of finite, regular, \mathbb{F} -valued Borel measures. Given $\mu, \nu \in M(G)$, define the **convolution**

$$\mu * \nu(A) := \mu \times (\{(g,h) : gh \in A\}).$$

This is related to convolution of functions: $d\mu = f \, dm$ and $d\nu = f' \, dm$, then $f(\mu * \nu) = (f * f') \, dm$. We could alternatively define this by its action on $f \in C_0(G)$:

$$\int f d(\mu * \nu) = \iint f(gh) d\mu(g) d\nu(h).$$

This is distributive over addition, and associative:

$$\int f d((\mu * \nu) * \lambda) = \iint f(ghk) f\mu(g) d\nu(h) d\lambda(k).$$

Observe that

$$\left|\int f \, d(\mu * \nu)\right| = \left|\iint f(gh) \, d\mu(g) \, d\nu(h)\right| \le \iint |f(gh)| \, d|\mu| \, d|\nu| \le \|f\| \cdot \|\mu\| \cdot \|\nu\|,$$

so $\|\mu * \nu\| \le \|\mu\| \|\nu\|$.

There is also an identity element with respect to convolution, δ_e . We have

$$(\delta_e * \mu)(A) = (\delta_e \times \mu)(\{(g, h) : gh \in A\}) = \mu(\{h : h \in A\}) = \mu(A),$$

and a similar property holds for right multiplication by δ_e . You can also check that $\delta_g * \delta_h = \delta_{gh}$. So M(X) is a unital Banach algebra with convolution as the multiplication.

1.2 Invertibility and ideals

Definition 1.1. Let \mathscr{A} be a Banch algebra. Then $x \in \mathscr{A}$ is **left-invertible** if there is some $y \in \mathscr{A}$ such that yx = 1, **right-invertible** if there is some $y \in \mathscr{A}$ such that xy = 1, and **invertible** if it is left and right invertible.

If x is left and right invertible, the inverses are the same: z = yxz = y. We write this as x^{-1} .

One important question is: Given an algebra, can we recover information about what generated it?

Definition 1.2. M is a **left ideal** in \mathscr{A} if M is a vector subspace and $xy \in M$ for all $x \in A$ and $y \in M$. M is a **right ideal** in \mathscr{A} if \mathscr{M} is a vector subspace and $yx \in M$ for all $x \in A$ and $y \in M$. M is an **ideal** if it is a left and right ideal.

Example 1.2. The compact operators, $\mathcal{B}_0(X) \subseteq \mathcal{B}(X)$, form an ideal.

Example 1.3. Let $X \neq \emptyset$ be compact, and let $K \subsetneq X$ be closed and nonempty. Then $C(X) \supseteq \{f \in C(X) : f|_K = 0\} =: I(K)$. Then $K \subseteq L \iff I(L) \subseteq I(K)$.

These get bigger if K gets smaller In fact, there is a correspondence between maximal ideals of C(X) and points of X. So we can recover X from C(X).

Lemma 1.1. Let \mathscr{A} is a Banach algebra with identity, and let $x \in \mathscr{A}$ have ||x - 1|| < 1. Then x is invertible.

Proof. Let $y := \sum_{k=0}^{\infty} (1-x)^k$. The norm of the k-th term is $\leq 1 ||1-x||^k$. So this is an absolutely convergent series. So for any $z \in \mathcal{A}$, we have $zy = \sum_{k=0}^{\infty} z(1-x)^k$. This gives

$$(1-x)y = \sum_{k=0}^{\infty} (1-x)(1-x)^k = \sum_{k=0}^{\infty} (1-x)^{k+1} = y - (1-x)^0.$$

So we get $xy = (1 - x)^0 = 1$.

Corollary 1.1. If $||x-1|| < \varepsilon < 1$, then $||x^{-1}-1|| < \frac{\varepsilon}{1-\varepsilon}$.

Proof.

$$\|x^{-1} - 1\| = \left\|\sum_{k=1}^{\infty} (1 - x)^k\right\| \le \sum_{k=1}^{\infty} \|1 - x\|^k < \frac{\varepsilon}{1 - \varepsilon}.$$

Corollary 1.2. If ba = 1 and ||c - a|| < 1/||b||, then c is left-invertible.

Proof. We have

$$||bc - 1|| = ||bc - ba|| \le ||b|| ||c - a|| < 1$$

so there is an $x = (bc)^{-1}$. So (xb)c = 1 means that xb is the inverse of c.

Proposition 1.1. Let \mathscr{A} be a Banach algebra with identity, let G_{ℓ} be the left-invertible elements, let G_r be the right-invertible elements, and let $G = G_{\ell} \cap G_r$. Moreover, the map $G \to G : x \mapsto x^{-1}$ is continuous.

Proof. Openness follows from the previous corollary. For continuity, if $x \in G$, suppose that $||y - x|| < \varepsilon^{-1}$ for some small enough $\varepsilon > 0$. Then $||x^{-1}y - 1|| < \varepsilon ||x^{-1}|| < 1$. So

$$||(x^{-1}y)^{-1} - 1|| < \frac{\varepsilon ||x^{-1}||}{1 - \varepsilon ||x^{-1}||}.$$

Then y^{-1} exists (because it is equal to $(x^{-1}y)^{-1}x^{-1}$, and

$$\|y^{-1} - x^{-1}\| < \frac{\varepsilon \|x^{-1}\|^2}{1 - \varepsilon \|x^{-1}\|}.$$

1.3 Maximal ideals and quotients

Definition 1.3. A left/right/two-sided ideal M is maximal if it is

- 1. proper $(M \neq A)$,
- 2. M is not properly contained in any other proper ideal.

Corollary 1.3. If \mathscr{A} has an identity, then

- 1. The closed of a left/right/two-sided ideal is an ideal of the same kind.
- 2. Maximal ideals are closed.

Proof. Check the proof of (1).

If M is a maximal (e.g. two-sided) ideal, then $M \cap G_{\ell} = \emptyset$. This is because if $x \in M \cap G_{\ell}$, then there exists some y such that yx = 1. So $1 \in M$, but then $a = a1 \in M$ for all $a \in \mathscr{A}$. So $M = \mathscr{A}$. In fact, we have $\overline{M} \cap G_{\ell} = \emptyset$. Now $M = \overline{M}$ by maximality. \Box

Example 1.4. The algebra $C_0(\mathbb{R}) \supseteq C_c(\mathbb{R}) = \{f : f|_{[-a,a]^c} = 0 \text{ for some } a\}$. This is a dense ideal. This tells us that this fact really relies on the existence of an identity.

Proposition 1.2. Any proper (left/right/two-sided) ideal in any algebra is contained in a maximal (left/right/two-sided) ideal.

Proof. Zorn's lemma.

Lemma 1.2. Let \mathscr{A} be a Banach algebra, and let M be a closed idea in \mathscr{A} . Then \mathscr{A}/M is still a Banach algebra.

Proof. Given $(x + M), (y + M) \in \mathscr{A}/M$, define (x + M)(y + M) := xy + M. To show that this is well-defined, we have that for any $m, n \in M$,

$$(x+m+M)(y+n+M) = xy + \underbrace{my + xn + mn}_{\in M} + M = xy + M.$$

To check that \mathscr{A}/M is a Banach algebra, we have

$$||(x+M)(y+M)|| = ||xy+M|| \le ||xy|| \le ||x|| ||y||.$$

This is true for all x, y, so we can take the inf over x and y to get $||(x + M)(y + M)|| \le ||(x + M)||||(y + M)||$.

1.4 The spectrum of an element

Definition 1.4. Let \mathscr{A} have an identity, and let $x \in A$. The **spectrum** is $\sigma(x) = \{\lambda \in \mathbb{F} : x - \lambda \text{ not invertible, the$ **left-spectrum** $is <math>\sigma_{\ell}(x) = \{\lambda \in \mathbb{F} : x - \lambda \text{ not left-invertible, and$ **right-spectrum** $is <math>\sigma_r(x) = \{\lambda \in \mathbb{F} : x - \lambda \text{ not right-invertible. The$ **resolvent** $is <math>\rho(x) = \mathbb{F} \setminus \sigma(x).$

Example 1.5. Let X be a compact, Hausdorff space, and let $f \in C(X)$. Then $\sigma(f) = f(X)$ is the image of f. If $g(f - \lambda) = 1$, then $g(x) = \frac{1}{f(x) - \lambda}$ for all x.